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Abstract

An invariant subspace theory for contractive transformations in Hilbert space which are due to L. de Branges and J. Roovnyak are considered. Now we are interested in using reproducing kernel spaces methods in Hilbert space in realization problem for functions of bounded type in the unit disk. Tlie relation between factorization and invariant subspaces for continuous and contractive transformations in Hilbert space will be discussed. 
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1.   Preliminaries 

Let H be the Hilbert space over ℂ with inner product 
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f,g ∈ H , where * denotes the complex conjugate. Let H2 be the Hilbert space of all ordered pairs {f,g}, f,g ∈ H with the inner product 
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∈ H2. T is called a closed linear relation in H2 if T is a (closed) linear manifold in H2. Such T is often considered as a graph of (closed) linear (multi-valued) operator. To any matrix-valued Nevanlinna function there is associated in a natural way a reproducing kernel Hilbert space. This Hilbert space provides a model for a simple symmetric not necessarily densely defined operator. We define the Nevanlinna class ℕn as the class of all n×n matrix functions N(
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), which are holomorphic in ℂ0 satisfy N(
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∈ C0 and for which the kernel
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is nonnegative, where * denotes the adjoint , the details related these notations will be given is section 2.  The reproducing kernel Hilbert space associated with the kernel KN(
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,λ), see [3] and [4], is denoted by L(N). For general information concerning reproducing kernel Hilbert spaces, we refer to [5], [10], [11], [12] and [13]., we shall give more details related to this subject in the following section. We see for each:     N(
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* ≥ 0,            and a non-decreasing n×n matrix function Σ on ℝ with  
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∈ ℂ0                               (1.1)
With this so-called Riesz-Hergoltz representation the kernel KN (
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see [2], [7], [14] and [16]. We define the ℂ
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). As usual L2 (dΣ) is the Hilbert space of all n×1 vector functions f defined on ℝ such that     
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The theory of Hilbert spaces of entire functions is a detailed description of eigenfunction expansions associated with formally selfadjoint differential operators. Let H be a Hilbert space, then L[H] set of bounded linear operators from H to H. Furthermore, when 
 U  unitary if U -1 = U* ⇒ U unitary operator , D(U) = R(U) = H; 

   U, V, S, A and T are relations in H2; 

V  isometric if V -1 ⊂ V* ⇒ V operator ; 

S  symmetric if S ⊂ S* ; 

A  selfadjoint if  A = A* ; 

T closed    ρ(T) = {
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∈ ℂ| (T -
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)-1 ∈ L(H)}     resolvent  set (closed); 

                 σ(T) = ℂ \ ρ(T)                                   spectrum (open); 

                 RT(
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  When A = A*, put 

  
[image: image39.wmf].

ο

;

}

0

|

}

,

{{

)

0

(

}

0

{

;

)

0

(

ο

0

0

¥

¥

=

=

Î

=

´

=

=

A

A

A

f

A

h

f

A

A

A

H

H


See [1] and [18]. 

We are interested in reviewing de Branges’ early work on Hilbert spaces of entire functions and present applications to the theory of hermitian operators and to the spectral theory of certain differential equations. To quote de Branges [4], the theory of Hilbert spaces of entire functions is a detailed description of eigenfunction expansions associated with formally selfadjoint differential operators. 

Associated to θt is a reproducing kernel Hilbert space H(θt) with reproducing kernel 
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 and a reproducing kernel Hilbert space H(At , Bt) with reproducing kernel :
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The spaces H(At, Bt) will be the de Branges spaces of entire function that we will be mainly interested in. They form an isometrically increasing sequence of spaces and are linked to the spectral function Δ by 
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The function Δ is in fact the Weiner algebra of functions continuous on the line. More precisely, 
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where k belongs to L
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(ℝ), see [6], [8], [9], [22] and [25]. 

Suppose now that we start with a spectral function Δ of the form (1.3). The associated inverse spectral problem consists of finding the associated potential V(t), i.e., to find a canonical equation with associated spectral function Δ. Under a suitable hypothesis,       V can be found. The theory of Hilbert spaces of entire functions plays an important role within this hypothesis. See [26], [28] and [33]. We discuss the use of reproducing kernel spaces method in the realization problem for functions "analytic" of bounded type in the unit disk. All of this will be done in section 2.. 

2.   Reproducing kernel Hilbert Space 
In this section we recall the definition of Nevanlinna Function, a reproducing kernel Hilbert space and introduce the spaces which we will study in the sequel.
Definition 2.1.  The Nevanlinna pick problem consists of finding a function f(
[image: image46.wmf]l

),
[image: image47.wmf]Î

l

ℂ analytic in Im 
[image: image48.wmf]l

 > 0,  Im (
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) having a fixed sign there, to take assigned values on infinite sequence of points with :     

                                                 Im (
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Definition 2.2.  We define the Nevanlinna class in ℕn as the class of all nxn matrix function N(
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), which are holomorphic in ℂ\ℝ,satisfying N(
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Definition 2.3.  For each N(
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)
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ℕn there exist nxn matrices A and B with A = A* and B = B* 
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 0, and a nondecreasing nxn matrix function Σ on ℝ with 
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with this so-called Riesz- Herglotz representation the kernel KN (
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, λ) takes the form                      
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the reproducing kernel Hilbert space associated with kernel KN (
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,λ) is denoted by L(N).
Definition 2.4.  Let h be a Hilbert space of ℂ n×1-valued function defined on some       set Ω. h is a reproducing kernel Hilbert space with reproducing kernel the ℂn×n-valued
function K(λ,u)  defined on Ω×Ω if the following conditions hold
         (a) for any c in ℂn×1 , ω in Ω, the function λ 
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K(λ,ω)c belong to h,
         (b) for any f in h, c in ℂn×1 , ω in Ω
                                              ( f,K0​
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           where (·,·(  denotes the inner product in h.
Definition 2.5. The function K is easily seen to  be unique. It is positive onΩ: for any r any c1 ,...,cr in ℂn×1, ω1,...,ωr in Ω, the r × r hermitian matrix with ij entry 
[image: image73.wmf]*
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K(ωi,ωj)ci is positive. Conversely, to any function K(λ,ω) positive on some set Ω is associated a unique reproducing kernel Hilbert space with reproducing kernel K.
Example 2.1. A typical example is the function K(λ,ω) = 1/-2πi(λ-ω.) defined for λ and ω in the open upper half plane ℂ+. The associated reproducing kernel Hilbert space is H2, the Hardy space of the line. More generally, if S is ℂp×q-valued, analytic, and bounded by one in modulus in ℂ.

The functions
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 are positive in ℂ+ .
Notation.  ρω(λ) = -2πi(λ-ω*).
Most of the reproducing Kernels to be studied and used in this paper are of the form:
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      (2.5)                                        where J is ℂm×m signature matrix, that is, J = J* = J -1, and where X is ℂk×m-valued and meromorphic in ℂ+ .
Examples  2.2.
(1) If J = 
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  , and Σ signature, also X = [I , θ], then K(λ, ω) = Σ - θ (λ) Σθ*(ω) /ρω(λ).
(3) If J = 
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 and X = [A,B], then K(λ,ω) = (A(λ)B* (ω)+B(λ)A* (ω)) /ρω(λ).
(4) If J = 
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 [A,B], then K(λ,ω) = (A(λ)B* (ω)-B(λ)A*(ω)) /-π(λ-ω*).
We now construct properties of J-contractive functions and of H(θ) spaces relevant
to our purpose. We first suppose J = J0 = 
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In this paper we use the following notations: (Consider T as a linear relation in H2)
D(T) = {x|
[image: image85.wmf]$

y (x,y) ∈ T} domain;
R(T) = {y|
[image: image86.wmf]$

x (x,y) ∈ T} range;
T(x)  = {y|{x,y} ∈ T}; 
              in particular T(0) = {y|{0,y}∈ T} multivalued part 

v(T) = {x|{x,0} ∈ T} nullspace; 

            when S is also a linear relation in H2, then: 

T+S = {{x,y + z}|{x,y} ∈ T,{x,z} ∈ S}sum; 
ℝ     = Set of real numbers; 

ℂ     = Set of complex numbers; 

ℂ
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   = {
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∈ ℂ, ± Im(
[image: image89.wmf]l

) > 0}; 

ℂ0    = ℂ \ ℝ ; 

ℕ     = {1, 2, …}; 

θ      = is the characteristic function ; 

ℂn×1        = Space of nx1 vectors with entries from C; 

T – λ    =  {{x,y - λ}|{x,y} ∈ T,      λ ∈ ℂ; 

αT        = {{x,αy}|{x,y} ∈ T},        α ∈ ℂ; 

T -1       = {{y,x}|{x,y} ∈ T} inverse; 

T*        = {{u,v}|[v,x] - [u,y] = 0, 
[image: image90.wmf]"

{x,y} ∈ T} adjoint; 

T∔ S    = {{x + f,y + g}|{x,y} ∈ T, {f,g} ∈ S} direct if T ∩ S = {{0}}; 

T⊕ S    = T ∔ S when S⊥ S in H2 ; 

T⊥        = Orthogonal complement in H2 ; 

T⊖ S    = T ∩ S⊥ , 
A,B       = are entire functions; 

H(A B) = De Brange’s spaces of entire functions A and B; 
K(λ ,ω) = is a kernel, λ , ω ∈ ℂ0; 

N(
[image: image91.wmf]l

)     = is a Nevanlinna function,  
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 ∈ ℂ0 ;
ℕn         = is the class of all n × n matrix functions N(
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).  
3.    Analytic Functions in Unit Disk 

A matrix valued function S is of bounded type in the unit disk D if its entries are quotient of H
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 functions, that is of functions analytic and bounded in modulo in D. We will suppose moreover S analytic at the origin, and the realization problem for S consists in finding representations of S as 
                                                 S(z)=  (
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 = S(0) and where A, B,
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 are bounded operators between adequate spaces. 

Such realizations always exist for functions analytic at the origin of S, some are more useful to handle problems (even if they are not of bounded type). Among all realizations related to S: when S is rational, of particular interest are minimal realizations; the realization (3.1) is minimal if the pair (A,
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ℂm if A acts from ℂm into ℂm . Minimality can also be defined for non-rational functions.  In this paper we will not be interested in minimal realizations but in realizations which are coisometric and, whenever possible, contractive: the matrix operator
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is a coisometry (i.e., has an adjoint which is isometric) between adequate spaces and, if possible, a contraction. Coisometric realizations were studied first by de Branges and are useful in the study of Schur algorithm. We first consider the case of Schur functions, i.e., of functions analytic and bounded by one in modulus in the unit disk. See [17]. 
Theorem 3.1. Let S be a ℂp×q valued Schur function. The function k(z,ω) = 
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is positive for z and ω in D. We denote H(S) the associated reproducing kernel Hilbert space. 

Theorem 3.2. The space H(S) has the following properties: 

(a) if  f  is in H(S) so is R0 f, where R0 f(z) = 
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      from H(S) into H(S), 

(b) for any c in ℂp , the function z →
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(c) the map 
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: f → f (0) is bounded from H(S) into ℂp . 
The space H(S) is contractively included in 
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 we get a realization for S with 

                                             D = S(0) : ℂq  →  ℂp
                                             Af  = R0 f :  H(s) → H(S)
                                             Bc =  
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 c :   ℂp → H(S)                                    (3.2)
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 is a coisometry and a contraction from H(S)⊕ ℂp into H(S) ⊕ ℂp .                          This realization is not minimal in general but it is observable since 
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Recent work has shown that the space H(S) is a convenient framework to treat various interpretation problems related to S and in particular to describe the Schur algorithm.  

We now consider more general situations and suppose first that S is in a generalized Schur class ρk  , i.e., that the function 
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 has k negative spaces. By a theorem of Krein and Langer we can write S as S = B-1 S1 where B is a rational Blashlike product and S0 is a ℂp×q Schur function. One can choose S1 and B such that H(B) ∩ H(S1) = {0}.                                                 

Since 

                                                 B(z) = D0 + zC0 (I-zA0)-1  B0                                             (3.3) 

with e.g., 

                                                    A0 = R0 : H(B)  → H(B) 

We get a realization for B -1 as 
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A computation shows that 
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Since we know a realization for S1 , 

 S1(z) = 
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We get the following realization for S = B -1 S1 . 
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 : H(B) ⊕ H(S1) → H(B) ⊕ H(S1) 
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Up to now we did not use the hypothesis H(B) ∩ H(S1) = {0}, and in fact the above argument will be valid for any function S of bounded type in D. 

Under the hypothesis H(B) ∩ H(S1) = {0} we now discuss another realization for S1, for which the scale space will be a Pontryagin space and the main operator in the state space will be R0 , see [19] and [20] 
Theorem 3.3.   Let S be ρk .   There exists a unique reproducing kernel Pontryagin space 

K(S) with reproducing kernel 
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The space K(S) is still R0 invariant and 
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 c belongs to K(S) for any c in ℂq . Thus, the realization
                                                  S(z) = 
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where 
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, A, B are as in (3.2), but with K(S) instead of H(S), is still valid. 

The above theorem still holds if S = 
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S1 where S0 is not any more a Blaschlike finite product, as long as H(S0) ∩ H(S1) = {0}. 
More general cases, i.e., when H(S0) ∩ H(S1) ≠ {0}, or when S is merely analytic at the origin are more difficult to deal with (see [7]).  Spaces H(S) and K(S) are useful to discuss factorization theorems. As a consequence of the commutant lifting theorem, one can prove: 

Theorem 3.4.   Let S0 and S1 be in ρp×q  and ρp×q' .  Then H(S0) is contractively included in H(S1) if and only if S1 = S0 S' where S' ∈ ρq'×q .
This suggests the problem, for a S in a class ρk , to find all S' such that K(S') is contractively included in K (S). 
ρp×g :  ρp×g'  valued Schur Functions, see [31] and [32]. 
Lemma 3.1.  Let S be in ρp×q , c in ℂq  and 
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Proof. The function bω(z) =  
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By the reproducing kernel property of 
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The required inequality follows then from the definition of H(S). See [23], [24] and [27]. 

The same argument, with more book-keeping, will show that, for ω1,...,ωN in D,            c1, … , cN   in ℂq , 
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is positive. 
Proof.  Let ci , i = 1,..., N, di , i = 1,..., N, ωi , i = 1,..., N be sequences respectively in   ℂq , ℂp , and D. We want to show that the sum:   Σ 
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This sum is composed of four terms 
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(4)  =  (3)*. 
The term (3) can be written as 
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By the Cauchy-Schwarz inequality, we get: 
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and, by inequality (
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from which the positivity of the sum follows 
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See [15] and [21]. 
The reproducing kernel Hilbert space with reproducing kernel (3.6) gives the de Branges Rovnyak model for contractions. It will be denoted by D(S). 

Theorem 3.6. Let S be in ρp×q and D(S) the associated reproducing kernel Hilbert space with reproducing kernel (3.6). Then, D(S) is invariant under the generalized shift 
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The adjoint of A in D(S) is 
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and every completely nonunitary contraction T acting in a Hilbert space is unit equivalent to the operator A* in some D(S) space. See [29], [30], [31] and [33].In these notes we will not pursue the discussion of applications of the space D(S) to model theory and the relationship between the de Branges Rovnyak model and the Sz. Nogy-Foias model. Our interest in H(S) and D(S) is that they give special realizations of S. 
Lemma 3.2.  Let S(z) = S(0) +  z
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Then the operator 
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Theorem 3.7. Let S(z) = S(0) + z
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                                   A* = generalized shift :  D(S) →  D(S) 
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 is a unitary operator from H(S) ⊕ ℂq into H(S) ⊕ ℂq where 
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 = S(0).      Proof. It is clear immediately from Theorem 3.3 and from Lemma 3.2 above. 
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